Вы на НеОфициальном сайте факультета ЭиП

На нашем портале ежедневно выкладываются материалы способные помочь студентам. Курсовые, шпаргалки, ответы и еще куча всего что может понадобиться в учебе!
Главная Контакты Карта сайта
 
Где мы?
» » » Производные и дифференциалы высших порядков

Реклама


Производные и дифференциалы высших порядков

Просмотров: 12742 Автор: admin

1.  Производные и дифференциалы высших порядков

Опр-ие: производной n-го порядка (n³2) функции у=f(х) называется производная (первого порядка) от производной (n-1)-го порядка.

Найдя 1-ю производную можно определить 2-ю производную по тем же формулам, по которым определяли первую.

Опр-ие: Дифференциалом n-го порядка функции у=f(х) называется дифференциал первого порядка от дифференциала (n-1)-го порядка. (обозначается dny)По определению dny= d(dn-1y). Иногда dy называют диф. Первого порядка. В общем случае, dny=f(n)(х)dxn, в предположении, что n-ая производная f(n)(х) сущ-ет, поэтому понятно, что n-e. Производную обозначают так

 

3. Теорема Ролля.


Теорема Ролля: Если функция у=f(х) непрерывна на замкнутом промежутке [a,b], дифференцируема хотя бы в открытом промежутке (a,b) и на концах промежутка ее значения совпадают f(a)=f(b), то внутри промежутка найдется такая точка x=c, что f'(c)=0

Док-во: Если функция сохраняет постоянное значение на промежутке [a,b],  f(х)= f(a)=f(b), то f'(c)=0 и в качестве точки с можно взять любую точку интервала (a,b).

Пусть теперь функция f(x) не является постоянной. По теореме Вейштраса существуют точки х1 и х2 на отрезке [a,b] , в которых достигаются наименьшее m и наибольшее М значения функции. Обе эти точки не могут быть концевыми для отрезка [a,b], т.к. из условия f(a)=f(b) вытекало бы, что m, следовательно, функция f(х) сохраняла бы постоянное значение, вопреки предположению.

Допустим, что не совпадает с концом отрезка точка х1, т.е. a< х1<</span>b, тогда х1 является точкой локальности экстремума. По условия теоремы существует f'(х1). Из этих двух утверждений по теореме Ферма получаем f'(х1)=0, следовательно,

х1 можно принять  за точку с.

 

 2.  Теорема Ферма (необходимое условие локального экстремума).

Опр-ие: Функция у=f(х) имеет в точке x0 локальный максимум, если сущ-ет окрестность 0-d, х0+d), для всех точек х которой выполняется неравенство f(х)Јf0). Аналогично определяется локальный минимум, но выполняться должно равенство f(х)³f0).


Теорема Ферма: Если функция у=f(х) имеет в точке х0 локальный экстремум и дифференцируема в этой точке, то ее производная f'(х0) равна нулю.

Док-во: Проведем его для случая максимума в точке х0. Пусть  0-d, х0+d) - та окрестность, для точек которой выполняется неравенство


Здесь возможно как 1 и 2 варианты, но  | х| <</span>δ

При ∆х>0, будет ∆y:∆x ≤0, поэтому


При ∆х<0, будет ∆y:∆x ≥0, поэтому

По условию теоремы, существует производная f'(х0)А это означает, что правая производная fпр'(х0) и левая производная fл'(х0) равны между собой: fпр'(х0)= fл'(х0)= f'(х0). Таким образом, с одной стороны, f'(х0)≤0, с другой стороны, f'(х0)≥0, что возможно лишь, когда f'(х0)=0.

 

4. Теорема Коши.


Теорема Коши: Пусть функции у=f(х) и у=g(х) неперырвны на отрезке [a,b],дифференцируемы хотя бы в открытом промежутке (a,b) и на этом промежутке g'(х) не обращается в нуль. Тогда существует такая точка c Î(a,b), что выполняется  равенство (1)


Докозательство: Вначале отметим, что знаменатель g(b)-g(a) ≠ 0,т.к. из равенства g(b)=g(a) следовало бы по теореме Ролля, что производная g'(х) обратилась бы в нуль в какой-нибудь точке промежутка (a,b), что противоречит условию g'(х)≠0. Образуем вспомогательную функцию:

К ней применима теорема Ролля: F(х) непрерывна в [a,b] и дифференцируема в (a,b)  как сумма функций, непрерывных и дифференцируемых в соответствующих промежутках, кроме того, как легко проверить непосредственно, F(a)=F(b)=0. Следовательно, существует точка c Î(a,b), , такая, что F'(c)=0. Вычисляем:


Подставляем x=c:

После деления на g'(х) (причем как говорилось раньше g'(х) ¹0), мы приходим к формуле (1)

 

5. Теорема Лагранжа.

Теорема Лагранжа: Если функция у=f(х) неперырвна на отрезке [a,b], дифференцируема  хотя бы в интервале (a,b) то существует такая точка c Î(a,b), что f(b)-f(a)=f'(c)(b-a).  

Доказательство: Применим теорему Коши к функциям f(x) и g(x)=x. Для них все условия этой теоремы выполняются, включая требование g'(х)¹0. Учитывая, что g(b)=b, g(a)=a, g'(x)=1, получим, (2)


Где точка с-точка, существующая в силу теоремы Коши в интервале (a,b). Умножив обе части на b-a, придем к формуле (2).

 

6. Правило Лопиталя.

Пусть выполнены следующие условия:

1. Функции f(x) и g(x) определены и дифференцируемы в выколотой окрестности точки a.

2.         (1)

 

3. g(x) и f(x) не равны нулю в этой выколотой окрестности.

 

Если при этом существует (2)


 

То существует и (3)

Причем, они равны между собой.(4)


Доказательство: Доопределим функции f(x) и g(x) в точке x=a, положив f(a)=g(a)=0. Рассмотрим отрезок между числами a и x, где точка из упомянутой в условии выколотой окрестности. Для определенности будем считать, что x<</span>a. Обе функции на отрезке [x,a] неперывны, а в интервале (x,a) дифференцируемы, т.е. удовлетворяют условиям теоремы Коши. Следовательно, Существует такая точка сÎ(x,a), что выполняется равенство(5)


Так как f(a)=g(a)=0. При х®а будет с®а, потому x<</span>c<</span>a.

По условию теоремы существует (2). Здесь х можно заменить любой другой буквой, в частности с. Переходя к пределу в равенстве (5) при х®а, получим


Или, что то же самое (4).

 7. Необходимое условие локального экстремума функции одной переменной.

Опр-ие: Функция у=f(х) имеет в точке x0 локальный максимум, если сущ-ет окрестность 0-d, х0+d), для всех точек х которой выполняется неравенство f(х)Јf0). Аналогично определяется локальный минимум, но выполняться должно равенство f(х)³f0).

Теорема Ферма: Если функция у=f(х) имеет в точке х0 локальный экстремум и дифференцируема в этой точке, то ее производная f'(х0) равна нулю.

Док-во: Проведем его для случая максимума в точке х0. Пусть  0-d, х0+d) - та окрестность, для точек которой выполняется неравенство


Здесь возможно как 1 и 2 варианты, но  | х| <</span>δ

При ∆х>0, будет ∆y:∆x ≤0, поэтому

При ∆х<0, будет ∆y:∆x ≥0, поэтому

По условию теоремы, существует производная f'(х0)А это означает, что правая производная fпр'(х0) и левая производная fл'(х0) равны между собой: fпр'(х0)= fл'(х0)= f'(х0). Таким образом, с одной стороны, f'(х0)≤0, с другой стороны, f'(х0)≥0, что возможно лишь, когда f'(х0)=0.

Достаточные условия локального экстремума.

1. предположим, что в некоторой окрестности точки х0 существует f'(х) ( в самой точке х0 производной может не существовать). Допустим, что с приближением к точке х0 слева функция f(х) возрастает (т.е. f'(х)х0 убывает (т.е. f'(х)<0). Очевидно, что в точке х0 имеется максимум. Вывод: Если в достаточно малой окрестности точки х0  f'(х) х0 и  f'(х) х0 , то в точке х0 имеется максимум.

Если в достаточно малой окрестности точки х0  f'(х) х0 и  f'(х) х0 , то в точке х0 имеется минимум.

2. Перейдем к формулировке достаточного условия экстремума с помощью второй производной. Предполагается, что в некоторой окрестности точки  х0 , в том числе и в самой точке  х0 , существует первая производная f'(х). Кроме того, в точке х0 существует вторая производная f''(х0). Исходя из выполнения необходимых условий экстремума, полагаем, что f''(х0)=0. Посмотрим теперь на f''(х)как на первую производную от функции


Допустим, что f''(х0)f'(х) возрастает при переходе значений х < х0 к значениям х > х0 . Но f'(х0)=0, поэтому возрастание f'(х0)<0, при х <</span> х0 и f'(х0)>0, при х х0 . (для значений х из достаточно малой окрестности х0 ). В соответствии с п.1 получается минимум в точке х0 . Аналогичное рассуждение при f''(х0)<0 приводит к существованию максимума в точке х0 . Вывод: если f'(х0)=0, а f''(х0)<0, то функция y=f(x) имеет локальный максимум в точке х0 . Если f'(х0)=0, а f''(х0)y=f(x) имеет локальный минимум в точке х0.
mat-an.zip [202,47 Kb] (cкачиваний: 95)

Информация

Комментировать статьи на нашем сайте возможно только в течении 60 дней со дня публикации.

Популярные новости

Статистика сайта



Rambler's Top100



 
Copyright © НеОфициальный сайт факультета ЭиП