Вы на НеОфициальном сайте факультета ЭиП

На нашем портале ежедневно выкладываются материалы способные помочь студентам. Курсовые, шпаргалки, ответы и еще куча всего что может понадобиться в учебе!
Главная Контакты Карта сайта
 
Где мы?
» » » ПРАКТИКУМ ПО ПРИМЕНЕНИЮ ЭКОНОМИКО-МАТЕМАТИЧЕСКИХ МЕТОДОВ И МОДЕЛЕЙ. Часть 3.

Реклама


ПРАКТИКУМ ПО ПРИМЕНЕНИЮ ЭКОНОМИКО-МАТЕМАТИЧЕСКИХ МЕТОДОВ И МОДЕЛЕЙ. Часть 3.

Просмотров: 5306 Автор: admin

ПРАКТИКУМ ПО ПРИМЕНЕНИЮ ЭКОНОМИКО-МАТЕМАТИЧЕСКИХ МЕТОДОВ И МОДЕЛЕЙ. Часть 3.

 

Работа № 5
ЭКОНОМИЧЕСКОЕ МОДЕЛИРОВАНИЕ МЕТОДАМИ ТЕОРИИ ИГР
Цель: ознакомиться с методами решения экономических задач в условиях конфликтных ситуаций используя математическую модель теории матричных игр на ЭВМ.
Рассмотрим методы принятия управленческих решений в условиях конфликта, когда в ситуации участвуют две стороны, интересы которых противоположны. Это могут быть, например, отношения продавца и покупателя, банка и заемщика, истца и ответчика. Для решения таких задач используют методы теории игр, для анализа которых удобно использовать ЭВМ.
Пусть в игре участвуют два игрока А и В. Игрок А имеет n чистых стратегий, а игрок В – m стратегий. А выигрывает у В сумму aij, если А выбрал вариант i (i=1,2,…,n), а В выбрал вариант j (j=1,2,…,m). Тогда платежная матрица игры имеет вид:
Для нахождения вероятностей pi и qj оптимальных смешанных стратегий необходимо решать прямую и двойственную задачи линейного программирования (ЗЛП) вида:
а) прямая ЗЛП – минимизировать Z= x1+x2+…+xn
Обращаем внимание: строка ограничения формируется из столбца платежной матрицы!
Решая ее, находим оптимальное решение x1*, x2*,…,xn*, откуда, разделив на Z*=x1*+x2*+…+xn*, получаем оптимальную стратегию для игрока А.
Здесь строка ограничения формируется из строки платежной матрицы.
Решая данную ЗЛП, находим оптимальное решение у1*, у2*,…,уm*, откуда, разделив на F*=y1*+y2*+…+ym*, получаем оптимальную стратегию для игрока B (q1*, q2*,.., qm*), которая заключается в применении j-й чистой стратегии с частотой qj*= yj*/ F*.
Затем находим цену игры g =1/Z*=1/F*.
ПРИМЕР 5.1. Две конкурирующие коммерческие организации А и В выпускают продукцию одного вида. Каждая организация планирует проведение рекламной акции, причем маркетологи каждой компании предложили четыре сценария ее проведения A1, A2, A3, A4 – для компании А и B1, B2, B3, B4 – для компании В. Ожидаемая прибыль для кампании А при каждой ее стратегии Ai и ответе Bj представлена в платежной матрице.
Необходимо найти оптимальные стратегии для обоих игроков А и В в предположении, что чем больше выигрыш одного игрока, тем он меньше для другого. Определить среднюю прибыль А.
Рассмотрим задачу со стороны игрока А. Для ее решения нужно составить соответствующую задачу линейного программирования, то есть необходимо найти минимум функции

Для решения данной ЗЛП на ЭВМ также используют надстройку EXCEL «Поиск решения».
Подготовим предварительно в электронной таблице данные.
Запускаем программу MS Excel, вводим в ячейку А1 открывшейся электронной таблицы подпись «Переменные», а в следующие ячейки В1-Е1 произвольные значения переменных x1, x2, x3, x4. Это вначале могут быть произвольные числа, например единицы. Далее, в ячейку А2 вводим подпись «Целевая», а в соседнюю ячейку В2 значение целевой функции (переключившись в английский режим набора текста): «=B1+С1+D1+Е1» или =SUMM(B1:E1), что означает формулу x1 + x2 + x3 + x4. В третьей строке вводятся левые части системы ограничений. Для этого переводим курсор в ячейку А3 и вводим в ней текст «Ограничения», а в ячейку В3 формулу «=70*В1+60*C1+20*D1+50*E1», которая соответствует левой части первого ограничения системы. Три остальных ограничения вводим в ячейки С3-В3, а именно,

После этого вызываем надстройку Сервис/Поиск решения, в поле «Установить целевую ячейку» даем ссылку на В2. Ниже, в области «Равной», поставить переключатель на минимальное значение. Ставим курсор в поле «Изменяя ячейки», и даем ссылки на переменные, обводя мышью ячейки В1-Е1.
Далее, переводим курсор в поле «Ограничения», и вводим ограничения. Для этого нажимаем на кнопку «Добавить» и в появившемся окне в поле «Ссылка на ячейку» даем ссылку на ячейки, содержащие левые части всех четырех ограничений, которые хранятся в ячейках В3:Е3 (то есть переводим курсор в поле «Ссылка на ячейку» и обводим мышью ячейки В3:Е3). В центральном поле выбираем знак неравенства – ограничения : «?», в поле «Ограничение» вводим единицу. Нажимаем «ОК». Для ввода дополнительных ограничений x1?0; x2?0; x3?0; x4?0 нажимаем «Добавить», в поле «Ссылка на ячейку» ставим курсор и обводим ячейки В1-Е1, выводим в центральное поле «?», ограничение «0», нажимаем «ОК».
Для запуска вычислений нажимаем кнопку «Выполнить». Появляется надпись, что решение найдено. Выбираем «Сохранить найденное решение» и нажимаем «ОК» – видим результат (рис.5.2): x1=0, x2 =0,015, x3 =0,05, x4 =0, что видно из ячеек В1-Е1.
Вводим в А5 подпись «Цена игры», а в соседнюю В5 формулу (переключаясь на английский язык) «=1/(В1+С1+D1+Е1)» или =1/В2. Результат: 50. Это средняя вероятность выигрыша для игрока А. Находим вероятности чистых стратегий в смешанной стратегии р. Для этого вводим в А6 подпись «Р1=», а в соседнюю В6 формулу «=В5*В1», вводим в А7: «Р2=», а в В7 формулу «=В5*С1», в А8: «Р3=», а в В8: «=В5*D1», в А9: «Р4=», в В9: «=В5*Е1». Данные показатели и есть решение задачи.
Рассмотрим теперь решение относительно игрока В.
Переходим на «Лист2» электронной таблицы, щелкнув на соответствующей закладке внизу таблицы. Вводим в ячейки открывшейся чистой электронной таблицы в ячейку А1 надпись «Переменные», а в следующие ячейки В1-Е1 произвольные значения переменных, например, цифры 1. В ячейку А2 вводим подпись «Целевая». Вводим в ячейку В2 значение целевой функции (переключившись в английский режим набора текста): «=B1+С1+D1+Е1», что означает формулу y1+ y2+ y3+ y4. В третьей строке вводятся левые части системы ограничений. Для этого переводим курсор в ячейку А3 и вводим в ней текст «Ограничения». Переключившись в английский режим клавиатуры, вводим в ячейку В3 формулу «=70*В1+30*C1+20*D1+50*E1», которая соответствует левой части первого ограничения системы.
Вводим в ячейку С3: «=60*В1+50*C1+40*D1+80*E1»,
в D3: «=20*В1+60*C1+80*D1+60*E1»,
в ячейку Е3: «=50*В1+70*C1+30*D1+50*E1».
После этого вызываем в меню «Cервис» надстройку «Поиск решений». В поле «Установить целевую ячейку» даем ссылку на В2. Ниже, в области «Равной», поставить переключатель на максимальное значение.
Ставим курсор в поле «Изменяя ячейки», и даем ссылки на переменные, обводя мышью ячейки В1-Е1. Далее, переводим курсор в поле «Ограничения», и вводим ограничения. Для этого, нажимаем на кнопку «Добавить» и далее в поле «Ссылка на ячейку» обводим ячейки В3:Е3, содержащие левые части всех четырех ограничений, в центральном поле выбираем знак неравенства – ограничения: «?», в поле «Ограничение» вводим единицу. Нажимаем «ОК». Для ввода дополнительных ограничений y1?0; y2?0; y3?0; y4?0 нажимаем «Добавить», в поле «Ссылка на ячейку» ставим курсор и обводим ячейки В1-Е1, выводим в центральное поле «?», ограничение «0», нажимаем «ОК».
Далее запускаем программу, нажимая «Выполнить». Результат решения обратной ЗЛП в ячейках В1-Е1. Вводим в А5 подпись «Цена игры», а в соседнюю В5 формулу (переключаясь на английский язык) «=1/(В1+С1+D1+Е1)». Находим вероятности чистых стратегий q в смешанной стратегии игрока В. Для этого вводим в А6 подпись «q1=», а в соседнюю В6 формулу «=В5*В1», вводим в А7: «q2=», а в В7 формулу «=В5*С1», в А8: «q3=», а в В8: «=В5*D1», в А9: «q4=», в В9: «=В5*Е1». Данные показатели и есть решение задачи для игрока В.
ПРИМЕР 5.2. Построить прямую и двойственную задачи линейного программирования для решения матричной игры, заданной платежной матрицей.
Задание 5.1. Самостоятельно с использованием ЭВМ решить поставленные ЗЛП и найти оптимальные смешанные стратегии для игроков А и В.
Отчет должен содержать решения поставленных ЗЛП (значения переменных xi u yj , значения целевых функций), смешанные стратегии для обоих игроков и цену игры g.
Задание 5.2. Директор предприятия А заключает договор с конкурирующей фирмой В о реализации своей продукции на конкретной территории областного центра. Конкурирующие стороны выделили пять районов области. Каждая из них может развивать свое производство в этих пяти районах: A1, A2, A3, A4, A5 – для стороны А и B1, B2, B3, B4, B5 – для В. Вероятности успеха для стороны А приведены в платежной матрице:
Ai\Bj B1 B2 B3 B4 B5
A1 30 70 50 40 60
A2 90 20 10 30 30+а
A3 30+а 40 30 80 60
A4 50 40 30 60 90
A5 20 30 30+а 60 10
Определить оптимальные стратегии для каждой стороны.
Значение неизвестного параметра а взять равным номеру варианта.
Отчет должен содержать математическую модель ЗЛП, составленную для игрока А, ее решение, оптимальную смешанную стратегию для игрока А, цену игры g, выводы, в каких районах предприятие А должно реализовывать свою продукцию и в каких пропорциях, чтобы получить оптимальную прибыль вне зависимости от поведения конкурента В и чему равна эта прибыль.
Задание 5.3. Решить игру, описанную платежной матрицей для обоих игроков (матрица приведена для игрока А).
Аi\Вj В1 В2 В3 В4 В5
А1 9 a 6 3 5
А2 10 7 a 7 5
А3 5 8 12 11 1
А4 5 6 4 8 a
Значение неизвестного параметра а взять равным номеру варианта.
Отчет должен содержать математические модели ЗЛП, составленные для обоих игроков, полученные в результате решения на ЭВМ смешанные стратегии для обоих игроков и цену игры g.

Работа № 6
ИГРЫ С ПРИРОДОЙ

Цель: научиться методам принятия решений в условиях неопределенности и риска (такие математические модели называются Играми с природой) на ЭВМ с использованием критериев Лапласа, Вальда, Байеса, Сэвиджа и Гурвица.
Рассмотрим ситуацию, когда лицо принимающее решение (ЛПР) может выбрать одну из n возможных альтернатив, которые обозначим A1, A2,..., An, то есть выбирает наилучший вариант действий из имеющихся п возможных. Выигрыш для каждой альтернативы зависит от того, какой вариант развития ситуации произойдет. Пусть возможны m вариантов развития ситуации, которые обозначим S1, S2,..., Sm .
Существует несколько критериев, позволяющих выбрать оптимальное решение в модели игры с природой. Сначала рассмотрим случай, когда показатель привлекательности (выигрыш ЛПР) максимизируется – «чем больше, чем лучше». Рассмотрим на примере способы решения такой задачи.
ПРИМЕР 6.1. Директор финансовой компании проводит рискованную финансовую операцию. Страховая компания предлагает застраховать сделку и предлагает 4 варианта страховки: A1, A2, A3, A4. Компенсация ущерба для каждого варианта зависит от того, какой из возможных страховых случаев произошел. Выделяют 5 видов страховых случаев: S1, S2, S3, S4, S5. Компенсации (тыс. у.е.) для каждого вида страховки при каждом страховом случае составляют матрицу выигрышей вида:
Ai/Sj S1 S2 S3 S4 S5
A1 43 22 42 49 45
A2 41 37 40 38 42
A3 39 48 37 42 36
A4 37 29 32 58 41
Выбрать наилучшую альтернативу, используя критерии Лапласа, Вальда, Байеса (при вероятностях состояний исходов p1 = 0,3; p2 = 0,2; p3= 0,1; p4= 0,3; p5 = 0,1), Сэвиджа и Гурвица (при коэффициенте доверия ?=0,4).
Вводим данные в электронную таблицу и готовим подписи в ячейках для дальнейшего расчета.
Вычисляем функции полезности для критерия Лапласа. Для этого ставим курсор в ячейку G2 и вводим формулу, усредняющую значения показателей привлекательности по первой альтернативе. Для этого вызываем мастер функций, нажимая на кнопку fx и выбираем в категории «Статистические» функцию «СРЗНАЧ», в качестве аргумента функции указываем ячейки B2:F2, обводя их курсором. Нажимаем ОК, видим результат 40,2. Автозаполняем ячейки G2-G5, перетаскивая нижний правый уголок ячейки G2. Видно, что наибольшая функция полезности 40,4 для альтернативы А3. Вводим в G6: «А3».
Для критерия Вальда вычисляем наименьшие показатели привлекательности для каждой альтернативы. Для этого вводим в Н2 функцию МИН с аргументами B2:F2: «=МИН(B2:F2)» (кавычки не вводить!). Автозаполняем на Н2-Н5. Выбираем альтернативу, где результат наибольший. Это значение 37 для альтернативы А2, вводим в Н6: «А2».
Для критерия Байеса функции полезности равны суммам выигрышей, умноженным на вероятности их исходов. Вводим в I2 формулу:
«=В2*0,3+C2*0,2+D2*0,1+E2*0,3+F2*0,1», автозаполняем на I2-I5. Выбираем альтернативу с наибольшей функцией полезности, то есть А4, вводим в I6: «А4».
Для критерия Сэвиджа необходимо построить матрицу рисков.
Для этого ставим курсор в ячейку В8 и вводим формулу «=МАКС(B$2:B$5)-B2», автозаполняем результат на ячейки В8-F11.
Далее находим максимальный риск для каждой альтернативы. Для этого ставим курсор в ячейку J2 и вводим «=МАКС(B8:F8)», автозаполняем результат на J2-J5. Выбираем альтернативу с минимальным риском, это А3. Вводим в J6: «А3».
Для критерия Гурвица нужно наибольшее значение каждой альтернативы умножить на ? (по условию ? = 0,4 ), наименьшее на (1- ?) и результаты сложить. Вводим в К2 формулу:
=МАКС(B2:F2)*0,4+МИН(B2:F2)*0,6 и автозаполняем результат на К2-К5. Выбираем альтернативу с наибольшей функцией полезности. Это А3, вводим К6: «А3». Задача решена.
Рассмотрим теперь метод решения задачи в случае минимизации критерия – «чем меньше, тем лучше».
ПРИМЕР 6.2. Фермер, имея в аренде большие площади под посев кукурузы, заметил, что влажности почвы в сезон созревания кукурузы недостаточно, чтобы получить максимальный урожай. Эксперты советовали фермеру провести дренажные каналы в период конца весны – начала лета, что должно значительно повысить урожай. Были предложены 5 проектов дренажных каналов: A1, A2, A3, A4, A5, затраты на которые зависят от погодных условий в период весна – лето.
Возможны варианты: S1 – дождливая весна и дождливое лето; S2 – дождливая весна и сухое лето; S3 – сухая весна и дождливое лето; S4 – сухая весна и сухое лето. Матрица затрат имеет вид:
Ai/Sj S1 S2 S3 S4
A1 21 12 22 25
A2 20 21 18 19
A3 16 33 14 17
A4 23 16 19 24
A5 15 16 24 26
Выбрать наилучшую альтернативу, используя критерии Лапласа, Вальда, Байеса с p1 = 0,2; p2 = 0,3; p3 = 0,3; p4 = 0,2 , Сэвиджа и Гурвица при коэффициенте доверия ? = 0,7 .
Вводим данные в электронную таблицу и готовим подписи в ячейках для дальнейшего расчета.
Вычисляем функции полезности для критерия Лапласа. Для этого ставим курсор в ячейку F2 и вводим формулу, автозаполняем на F2-F6. Наилучшей в данном случае считается альтернатива с минимальной функцией полезности, это А2. Вводим в F7: «А2».
Для критерия Вальда вычисляем наибольшие показатели привлекательности для каждой альтернативы. Для этого вводим в G2 функцию «=МАКС(B2:E2)», автозаполняем на G2-G6. Выбираем альтернативу, где результат наименьший, вводим в G7: «А2».
Для критерия Байеса функция полезности вычисляется так же как и для предыдущего примера (но для 4-х состояний природы), в ячейку Н2 формулу «=B2*0,2+C2*0,3+D2*0,3+E2*0,2», автозаполняем на Н2-Н6. Выбираем альтернативу с наименьшей функцией полезности, это А1, вводим в Н7: «А1».
Для критерия Сэвиджа необходимо построить матрицу рисков. Для этого ставим курсор в ячейку В9 и вводим формулу «=B2-МИН(B$2:B$6)», автозаполняем результат на ячейки В9-Е13.
Далее находим максимальный риск для каждой альтернативы. Для этого ставим курсор в ячейку I2 и вводим «=МАКС(B9:E9)», автозаполняем результат на I2-I6. Выбираем альтернативу с минимальным риском, таких альтернатив две, это А1 и А4. Вводим в I7: «А1, А4».
Для критерия Гурвица нужно наименьшее значение каждой альтернативы умножить на ? (по условию ? = 0,7), наибольшее на (1– ?) и результаты сложить. Вводим в J2 формулу:
= МИН(B2:E2)*0,7+МАКС(B2:E2)*0,3 и автозаполняем результат на J2-J6. Выбираем альтернативу с наименьшей функцией полезности. Это А1, вводим J7: «А1». Задача решена.
Задание 6.1. Директор торговой фирмы, продающей телевизоры, решил открыть представительство в областном центре. У него имеются альтернативы либо создавать собственный магазин в отдельном помещении, либо организовывать сотрудничество с местными торговыми центрами. Всего можно выделить 5 альтернатив решения: A1, A2, A3, A4, A5. Успех торговой фирмы зависит от того, как сложится ситуация на рынке предоставляемых услуг. Эксперты выделяют 4 возможных варианта развития ситуации S1, S2, S3, S4.
Прибыль фирмы для каждой альтернативы при каждой ситуации представлена матрицей выигрышей aij (млн. р./год).
Аi/Bj S1 S2 S3 S4
A1 a 10 14 5
A2 9 10 11 10
A3 2 4 9 22
A4 12 14 10 1
A5 15 6 7 14
Выбрать наилучшую альтернативу, используя критерии Лапласа, Вальда, Байеса с p1 = 0,4; p2 = 0,3; p3 = 0,1; p4 = 0,2 , Сэвиджа и Гурвица при коэффициенте доверия ? = 0,6.
Значение неизвестного параметра а взять равным номеру варианта.
Задание 6.2. Нефтяная компания собирается построить в районе крайнего севера нефтяную вышку. Имеется 4 проекта A, B, C и D.
Затраты на строительство (млн. руб.) зависят от того, какие погодные условия будут в период строительства. Возможны 5 вариантов погоды S1, S2, S3, S4, S5. Выбрать оптимальный проект для строительства используя критерии Лапласа, Вальда, Байеса с p1 = 0,1; p2= 0,2; p3= 0,3; p4= 0,2; p5 = 0,2, Сэвиджа и Гурвица при ? = 0,6. Матрица затрат имеет вид:
Аi/Sj S1 S2 S3 S4 S5
A1 а 12 8 10 5
A2 9 9 10 7 8
A3 6 8 15 9 7
A4 9 10 8 11 7
Значение неизвестного параметра а взять равным номеру варианта.

Работа № 7
ЦЕЛЕВАЯ ФУНКЦИЯ ПОТРЕБЛЕНИЯ. ПОСТРОЕНИЕ ФУНКЦИИ СПРОСА

Цель: используя методы моделирования с помощью целевой функции потребления научиться находить оптимальный набор благ потребителя, функции спроса на блага по цене, функции спроса по доходу с помощью ЭВМ.
Рассмотрим некоторого потребителя, который потребляет некоторые блага Б1, Б2,…, Бn. Уровень удовлетворения потребностей потребителя обозначим через U. Пусть количество потребления каждого блага равно х1, х2, …, хn. Целевой функцией потребления называется зависимость U =U(x1, x2, ..., xn). Каждый потребитель стремится максимизировать уровень удовлетворения потребностей, то есть U> max. Обозначим цену на единицу каждого блага через р1, р2,…, рn, а доход потребителя через D. Тогда должно выполняться бюджетное ограничение p1x1 + p2x2 + ...+ pnxn ?D. В результате для нахождения оптимального набора благ необходимо решать задачу оптимального программирования:

Рассмотрим методы ее решения на примере.
ПРИМЕР 7.1. Пусть число благ равно трем, а функция потребления равна U(x1, x2, x3). Предположим, что цена на единицу первого блага равна 15, второго 10 и третьего 15, а доход потребителя составляет 500. Тогда задача примет вид:

Вводим в ячейку В4 «=КОРЕНЬ(B3*C3*D3)» (кавычки не вводить!), а в В5 «=B3*B2+C3*C2+D3*D2». Запускаем СЕРВИС/ПОИСК РЕШЕНИЯ. В ячейку «Установить целевую» устанавливаем ссылку на В4, флажок напротив надписи «Равной максимальному значению». После ставим курсор в поле «Изменяя ячейки» и обводим ячейки с переменными В3, С3 и D3. Для того чтобы ввести ограничения, нажимаем «Добавить», откроется окно «Добавление ограничения».
В левом поле «Ссылка на ячейку» вводим ссылку на левую часть первого ограничения – ячейку В5, в центральном окне определяем знак «?» и в правом «Ограничения» делаем ссылку на доход в D4. Для ввода второго ограничения вновь нажимаем «Добавить», ставим курсор в левое поле и обводим ячейки В3, С3 и D3 в среднем окне ставим «?» и в правом число 0.
Нажимаем «Выполнить», подтверждаем результаты, выбирая «Сохранить найденное решение» и «ОК», получаем результат: x1 =11,1; x2=16,7; x3 =11,1; целевая функция равна 45,4.

Решим теперь задачу нахождения функции спроса по цене. Найдем, например, спрос на второе благо для разных цен на единицу этого блага. Будем задавать цену на второе благо от 5 до 15 и фиксировать спрос x2 при этих ценах. Введем в столбец F цену блага, а в столбец G спрос на него. Ставим курсор в F1 и вводим подпись «Цена», а в ячейку G1 вводим подпись «Спрос». В соответствии с условием задачи, цена второго блага составляет 10 денежных единиц, в результате решения спрос на это благо составляет x2 =16,7 . Вводим в ячейку F7 значение цены 10, а в соседнюю G7 – спрос 16,7. Рассчитаем теперь спрос при цене 11. Исправляем в С2 значение на 11, вызываем СЕРВИС/ПОИСК РЕШЕНИЯ, нажимаем «Выполнить», подтверждаем результаты. Видим в ячейке С3 новое значение спроса – x2 =15,2 . Вводим в F8 число 11, в G8 число 15,2. Точно также (обязательно проделать на ЭВМ!) изменяем в С2 значения на 12, 13, 14 и 15, записав эти же значения в F9-F12, каждый раз запускаем надстройку «Поиск решения», получаем новые результаты в С3, записываем их вручную (не копированием, округляя до десятых) в G9-G12. Далее рассчитываем значения спроса для цены меньшей 10 единиц. Для этого изменяем в С2 значения на 5, 6, 7, 8 и 9, записав эти значения в F2-F6, каждый раз запускаем надстройку «Поиск решения», получаем новые результаты в С3, записываем их в G2-G6. В результате, при правильном выполнении всех действий, получаем следующие результаты:
Построим по полученным данным функцию спроса. Для этого ставим курсор в любую свободную ячейку, вызываем мастер диаграмм (ВСТАВКА/ДИАГРАММА), выбираем тип диаграммы «График», вид «График с маркерами» (левый второй сверху), нажимаем «Далее».
Ставим курсор в поле «Диапазон» и обводим ячейки G2-G12. Переходим на закладку «Ряд» и ставим курсор в поле «Подписи оси Х», обводим ячейки F2-F12, нажимаем «Готово». Получаем график функции спроса по цене.

Точно также можно исследовать спрос и на первое и третье благо.
Найдем теперь функцию спроса по доходу на второе благо. Для этого будем менять доход в диапазоне 200-500 через 50 единиц, фиксируя спрос в ячейке С3. Вводим в H1 подпись «Доход», а в I1 подпись «Спрос». Исправляем в С2 цену на 10, а в D4 ставим доход 200. Вызываем и запускаем надстройку ПОИСК РЕШЕНИЯ. Видим, что спрос на второе благо равен 6,7. Вводим в H2 значение дохода 200, а спрос 6,7 вводим в I2. Далее, по аналогии, изменяем в D4 доход на 250, 300, 350, 400, 450, 500, 550, 600, занося эти данные в H3-H10, каждый раз запускаем надстройку ПОИСК РЕШЕНИЯ, полученный в С3 спрос вносим в ячейки I3-I10. При правильном расчете результаты будут 8,3; 10; 11,7; 13,3; 15; 16,7; 18,3; 20. По полученным данным, также как и для функции спроса по цене, строим график. Видно, что в данном случае график спроса по доходу прямая линия.
Следует отметить, что можно построить функцию перекрестного спроса на одно благо по цене на другое.
Задание 7.1. Четырехфакторную целевую функцию потребления U=U(x1, x2, x3, x4), цены на блага p1, p2, p3, p4, и доход D взять в соответствии с вариантом из таблицы.
1. Составив и решив задачу оптимального программирования, найти оптимальный набор благ.
2. Составить функцию спроса на второе благо от его цены, взяв 5 целых последовательных значений цены до и после той, какая указана в таблице.
3. Составить функцию спроса на третье благо по доходу, взяв по четыре значения дохода до и после указанной в таблице с шагом 50.
Отчет должен содержать оптимальный набор благ x1, x2, x3, x4, график функции спроса на второе благо от его цены x2(p2) и график функции спроса на третье благо по доходу x3(D).

 

Работа № 8
БАЛАНСОВЫЕ МОДЕЛИ

Цель: рассмотреть методы решения задач межотраслевого
анализа на ЭВМ используя модель Леонтьева.
Балансовые модели предназначены для определения равновесного баланса между производством, потреблением и реализацией во внешнюю сферу продукции нескольких взаимосвязанных отраслей.
Рассмотрим решение межотраслевого баланса на ЭВМ в соответствии с моделью Леонтьева на следующем примере.
Имеется баланс трех взаимосвязанных отраслей за предыдущий период.
1. Найти валовой продукт каждой отрасли, чистую продукцию каждой отрасли, матрицу коэффициентов прямых затрат.
2. Какой будет конечный продукт каждой отрасли, если валовой станет равен, соответственно, 100, 150 и 200.
3. Какой будет валовой продукт каждой отрасли, если конечный продукт первой отрасли необходимо увеличить на 50%, второй уменьшить на 4 единицы, а третьей увеличить на 6 единиц.
Подготавливаем таблицу исходных данных в электронной таблице Excel.
1. Для нахождения валового продукта каждой отрасли в ячейку F3 вводим формулу «=СУММ(В3:Е3)» (для ее ввода достаточно нажать кнопку автосуммы со значком ?). Результат – 124. Автозаполнением переносим результат ячейки на F4 и F5. Для расчета чистой прибыли вводим в ячейку В6 формулу «=F3-B3-B4-B5», в С6 формулу «=F4-C3-C4-C5», в D6 формулу «=F5-D3-D4-D5». Находим коэффициенты прямых затрат. Для этого каждый столбец матрицы В3-D5 нужно разделить на соответствующий валовой продукт. В ячейку В7 вводим «=B3/$F$3» (чтобы сделать абсолютную ссылку $F$3 нужно щелкнуть по ячейки F3 и нажать клавишу F4). Автозаполняем В7 на В8 и В9. Аналогично вводим в С7 «=C3/$F$4» и автозаполняем на С8 и С9.
Вводим в D7 «=D3/$F$5» и автозаполняем на D8 и D9. Матрица коэффициентов затрат рассчитана.
2. Так как новый валовой продукт каждой отрасли равен, соответственно, 100, 150 и 200, то вводим эти числа в ячейки Н3, Н4 и Н5. По формуле, новый конечный продукт равен Y = (E–A)X . Для ее использования вводим единичную матрицу. В А12 вводим подпись «Е=», а в В11-D13 вводим числа
Рассчитываем матрицу (Е-А). Вводим в А16 подпись «(Е-А)=», а в В15 «=B11-B7». Автозаполняем ячейку на В15-D17. Для вычисления результата – новых значений конечного продукта в ячейку G3 вводим функцию перемножения матриц – МУМНОЖ (категория Математические»). Аргументы функции: в поле «массив 1» даем ссылку B15:D17 (матрица Е-А), в поле «массив 2» – H3:H5 (новый валовой продукт). Далее обводим ячейки G3-G5 курсором мыши, выделяя их, и нажимаем F2 и Ctrl+Shift+Enter. Результат – новый конечный продукт.
3. Если конечный продукт первой отрасли нужно увеличить на 50%, то он станет 124,5, если второй уменьшить на 4, то он станет 93, если третий увеличить на 6 единиц, он будет 138. Вводим в ячейки G7-G9 числа 124,5; 93; 138. В соответствии с формулой Леонтьева новый валовой продукт находим по формуле X = (E–A)–1Y. Для расчета обратной матрицы в ячейку Е16 вводим подпись «(Е–А) обрат.», а в F15 ставим формулу расчета обратной матрицы МОБР (категория «Математические»). Аргумент функции – ссылка на B15-D17. Обводим курсором ячейки F15-H17 и нажимаем F2 и Ctrl+Shift+Enter. Для вычисления новых значений валового продукта в ячейку Н7 вводим функцию перемножения матриц – МУМНОЖ. Аргументы: в поле «массив 1» даем ссылку F15:H17, в поле «массив 2» – G7:G9. Далее обводим ячейки Н7-Н9 и нажимаем F2 и Ctrl+Shift+Enter. Результат – новый валовой продукт. Задача решена.
1. Найти конечный продукт каждой отрасли, чистую продукцию каждой отрасли, матрицу коэффициентов прямых затрат.
2. Какой будет конечный продукт каждой отрасли, если валовой продукт первой отрасли увеличится в 2 раза, у второй увеличится на половину, у третьей не изменится, у четвертой – уменьшится на 10 процентов.
3. Найти валовой продукт, если конечный станет равен 700, 500, 850 и 700.
Отчет должен содержать полную балансовую таблицу для четырех отраслей, конечный продукт каждой отрасли при изменении валового, валовой продукт каждой отрасли при изменении конечного.
СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ
1. Гельруд Я.Д. Экономико-математические методы (электронный вариант). –Челябинск.: ЮУрГУ. 2010. – 421с.
2. Кремер Н.Ш. Исследование операций в экономике. – М.: ЮНИТИ, 2001. – 407с.
3. Афанасьев М.Ю., Суворов Б.И. Исследование операций в экономике: модели, задачи, решения: Учеб.пособие. – М.: ИНФРА-М, 2003. – 444с.
4. Бережная Е.В., Бережной В.И. Математические методы моделирования экономических систем: Учебное пособие. – 2-е изд., перераб. и доп. – М.: Финансы и статистика, 2006. – 368с.
5. Вентцель Е.С. Исследование операций: Задачи, принципы, методология. –М.: Высшая школа, 2005. – 208 с.
6. Моделирование рисковых ситуаций в экономике и бизнесе: Учебное пособие для студентов вузов / А. М. Дубров, Б. А. Лагоша, Е. Ю. Хрусталев, Т. П. Барановская; Под ред. Б. А. Лагоши. – 2-е изд. М.: Финансы и статистика, 2003. –222 с.
7. Моделирование экономических процессов: Учебник для студентов вузов, обучающихся по специальностям экономики и управления (060000) / Под ред. М.В. Грачёвой, Л.Н. Фадеевой, Ю.И. Черемных. М.: ЮНИТИ-ДАНА, 2005. –351 с.
8. Фомин Г.П. Математические методы и модели в коммерческой деятельности: Учебник. –2 е изд. М.: Финансы и статистика, 2005. –616 с.
9. Шелобаев С.И. Математические методы и модели в экономике, финансах, бизнесе: Учеб. пособие для вузов. –2 е изд. М.: ЮНИТИ-ДАНА, 2005. –287 с.
10. Гельруд Я.Д. Модели и методы управления проектами в условиях риска и неопределенности. –Челябинск.: ЮУрГУ. 2006. – 220 с.




Информация

Комментировать статьи на нашем сайте возможно только в течении 60 дней со дня публикации.

Популярные новости

Статистика сайта



Rambler's Top100



 
Copyright © НеОфициальный сайт факультета ЭиП